On complete reducibility for infinite-dimensional Lie algebras

نویسندگان

  • MARIA GORELIK
  • VICTOR KAC
چکیده

In this paper we study the complete reducibility of representations of infinitedimensional Lie algebras from the perspective of representation theory of vertex algebras.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Complete Reducibilty for Infinite-dimensional Lie Algebras

In this paper we study the complete reducibility of representations of infinitedimensional Lie algebras from the perspective of representation theory of vertex algebras.

متن کامل

Complete Reducibility of Integrable Modules for the Affine Lie (super) Algebras

We prove complete reducibility for an integrable module for an affine Lie algebra where the canonical central element acts non-trivially. We further prove that integrable modules does not exists for most of the super affine Lie algebras where the center acts non-trivially. 1 2000 Mathematics subject classification primary 17B65, 17B68

متن کامل

On permutably complemented subalgebras of finite dimensional Lie algebras

Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...

متن کامل

Deformation of Infinite Dimensional Differential Graded Lie Algebras

For a wide class of topological infinite dimensional differential graded Lie algebras the complete set of deformations is constructed. It is shown that for several deformation problems the existence of a formal power series solution guarantees the existence of an analytic solution.

متن کامل

On dimension of a special subalgebra of derivations of nilpotent Lie algebras

‎Let $L$ be a Lie algebra‎, ‎$mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$‎. ‎We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields‎. ‎Also‎, ‎we classi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010